CSE 451: Operating Systems
Winter 2013

Synchronization

Gary Kimura

Synchronization

« Threads cooperate in multithreaded programs

— to share resources, access shared data structures
* e.g., threads accessing a memory cache in a web server

— also, to coordinate their execution
* e.g., a disk reader thread hands off blocks to a network writer

thread through a circular buffer

Ask\ writer
\» reader thread @
thread
circular

buffer

Synchronization

For correctness, we have to control this cooperation

— must assume threads interleave executions arbitrarily and at
different rates

 Modern OS’s are preemptive
« Most new machines are multicore

» scheduling is not under application writers’ control (except for real-time,
but that's not of interest here).

We control cooperation using synchronization
— enables us to restrict the interleaving of executions

Note: this also applies to processes, not just threads
— (Pllalmost never say “process” again!)

It also applies across machines in a distributed system (Big
Research Topic)

Shared resources

« We’'ll focus on coordinating access to shared
resources

— basic problem:
* two concurrent threads are accessing a shared variable

« if the variable is read/modified/written by both threads, then
access to the variable must be controlled

» otherwise, unexpected results may occur

 Qver the next several lectures, we'll look at:

— mechanisms to control access to shared resources
* |ow level mechanisms like locks

 higher level mechanisms like mutexes, semaphores, monitors,
and condition variables

— patterns for coordinating access to shared resources
* bounded buffer, producer-consumer, ...

The classic example

e Suppose we have to implement a function to
withdraw money from a bank account:

int withdraw (account, amount) {

int balance = get balance (account);

balance -= amount;

put balance (account, balance);

return balance;

}
* Now suppose that you and your S.0O. share a bank
account with a balance of $100.00

— what happens if you both go to separate ATM machines, and
simultaneously withdraw $10.00 from the account?

* Represent the situation by creating a separate thread
for each person to do the withdrawals
— have both threads run on the same bank mainframe:

int withdraw (account, amount) {
int balance = get balance (account);
balance -= amount;
put balance (account, balance);

return balance;

int withdraw (account, amount) ({
int balance = get balance (account);
balance -= amount;
put balance (account, balance);

return balance;

Interleaved schedules

* The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

balance = get balance (account);
balance -= amount;
- context switch
Execqurlsequence balance = get balance (account);
as seen by CPU 3
balance -= amount;

put balance (account, balance);

context switch

put balance (account, balance);

 What's the account balance after this sequence?
— who’s happy, the bank or you?

« How often is this unfortunate sequence likely to
occur?

Other Execution Orders

« Which interleavings are ok? Which are not?

int withdraw (account, amount) {
int balance = get balance (account);
balance -= amount;
put balance (account, balance);

return balance;

int withdraw (account, amount) ({
int balance = get balance (account);
balance -= amount;
put balance (account, balance);

return balance;

How About Now?

int xfer (from, to, amt) {
int bal = withdraw (from,
deposit (to, amt);

return bal;

amt) ;

int xfer (from, to, amt) {
int bal = withdraw (from,
deposit(to, amt);

return bal;

amt) ;

And This?

i++;

i++;

10

he crux of the matter

« The problem is that two concurrent threads (or
processes) access a shared resource (account)
without any synchronization

— creates a race condition
 output is non-deterministic, depends on timing

« We need mechanisms for controlling access to

shared resources in the face of concurrency
— SO we can reason about the operation of programs
» essentially, re-introducing determinism

« Synchronization is necessary for any shared data

structure
— buffers, queues, lists, hash tables, scalars, ...

11

What resources are shared?

* Local variables are not shared
— refer to data on the stack, each thread has its own stack
— never pass/share/store a pointer to a local variable on
another thread’s stack!
* Global variables are shared
— stored Iin the static data segment, accessible by any thread

« Dynamic objects are shared

— stored in the heap, shared if you can name it
* in C, can conjure up the pointer
— e.g., void *x = (void *) OxDEADBEEF
 in Java/C#, strong typing prevents this
— must pass references explicitly

12

Mutual exclusion

« We want to use mutual exclusion to synchronize
access to shared resources

« Mutual exclusion makes reasoning about program
behavior easier

— making reasoning easier leads to fewer bugs

« Code that uses mutual exclusion to synchronize its
execution is called a critical section

— only one thread at a time can execute in the critical section
— all other threads are forced to wait on entry

— when a thread leaves a critical section, another can enter

13

Critical section requirements

 Critical sections have the following requirements
— mutual exclusion
» at most one thread is in the critical section
— progress

 if thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

— bounded waiting (no starvation)

 if thread T is waiting on the critical section, then T will
eventually enter the critical section

— assumes threads eventually leave critical sections
 vs. fairness?
— performance

» the overhead of entering and exiting the critical section is small
with respect to the work being done within it

14

Mechanisms for building critical sections

Locks
— very primitive, minimal semantics; used to build others

Semaphores
— basic, easy to get the hang of, hard to program with

Monitors

— high level, requires language support, implicit operations

— easy to program with; Java “synchronized()” as an
example

Messages

— simple model of communication and synchronization based
on (atomic) transfer of data across a channel

— direct application to distributed systems (SOAP, RPC)

15

Locks

A lock is a object (in memory) that provides the following two
operations:

- acquire ():athread calls this before entering a critical section

- release ():athread calls this after leaving a critical section
Threads pair up calls to acquire () and release ()

— between acquire ()and release (), the thread holds the lock

— acquire () does not return until the caller holds the lock

« at most one thread can hold a lock at a time (usually)

— s0: what can happen if the calls aren’t paired?
Two basic flavors of locks

— spinlock

— blocking (a.k.a. “mutex”)

16

Using locks

acquire (lock)

,) balance = get balance (account) ;
int withdraw (account, amount) { -

, balance -= amount;
acquire (lock);

balance = get balance (account); acquire (lock)

balance -= amount; put balance (account, balance);

critical
section

put balance (account, balance); release (lock) ;

release (lock); balance = get balance (account);

return balance; balance -= amount;
4

put balance (account, balance);

v release (lock) ;

« What happens when green tries to acquire the lock?

* Why is the “return” outside the critical section?
— 1S this ok?

Spinlocks

 How do we implement locks? Here's one attempt:

struct lock {
int held = 0;
}
void acquire(lock) {

the caller “busy-waits”,
while (lock->held); <

or spins, for lock to be
lock->held = 1; released = hence spinlock

}

vold release(lock) {
lock->held = 0O;
}

 Why doesn'’t this work?
— where is the race condition?

18

Implementing locks (cont.)

* Problem is that implementation of locks has critical
sections, too!
— the acquire/release must be atomic

« atomic == executes as though it could not be interrupted
» code that executes “all or nothing”

* Need help from the hardware
— disable/enable interrupts
 to prevent context switches
— atomic instructions
 test-and-set, compare-and-swap, ...
— multiple processors?

19

Spinlocks redux: Test-and-Set

« CPU provides the following as one atomic instruction:

bool test and set (bool *flag) {
bool old = *flag;
*flag = True;
return old;

}

 Remember, this is a single instruction...

20

Spinlocks redux: Test-and-Set

« S0, to fix our broken spinlocks, do:

struct lock {
int held = 0;
}
void acquire (lock) {

while (test and set (&lock->held)) ;

}

void release(lock) {
lock->held = 0;
}

— mutual exclusion?
— progress?

— bounded waiting?
— performance?

Real World Example

* Windows XP AcquireSpinlock

AcquireSpinlock:

; Attempt to assert the lock
lock bts dword ptr [LockAddress], O
ic SpinLabel ; spinlock owned
ret

SpinLabel:

; Was spinlock cleared?

test dword ptr [LockAddress], 1
jz AcquireSpinlock

YIELD

jmp Spinlabel

22

Reminder of use ...

int withdraw (account, amount) {
acquire (lock) ;
balance = get balance (account);
balance -= amount;
put balance (account, balance);
release(lock) ;

return balance;

 How does a thread blocked on an “acquire” (that is,

critical
section

acquire (lock)

balance = get balance (account);

balance -= amount;

acquire (lock)

put balance (account, balance);
release (lock) ;

balance = get balance (account);

balance -= amount;
put balance (account, balance);

release (lock) ;

stuck in a test-and-set loop) yield the CPU?

— calls yield() (spin-then-block)

— there’s an involuntary context switch

23

Problems with spinlocks

Spinlocks work, but are horribly wasteful!

— If a thread is spinning on a lock, the thread holding the lock
cannot make progress

— And neither can anyone else! Why?

Only want spinlocks as primitives to build higher-level
synchronization constructs
— Why is this okay?

When might the above points be misleading?

24

Another approach: Disabling interrupts

struct lock {

}

void acquire (lock)

{

cli(); // disable interrupts

}

vold release (lock)

{

sti(); // reenable interrupts

}

25

Problems with disabling interrupts

Only available to the kernel
— Can't allow user-level to disable interrupts!

Insufficient on a multiprocessor
— Each processor has its own interrupt mechanism

“Long” periods with interrupts disabled can wreak
havoc with devices

Just as with spinlocks, you only want to use disabling
of interrupts to build higher-level synchronization
constructs

26

Simple Locks

Locks are the lowest-level mechanism
— very primitive in terms of semantics — error-prone
— Implemented by spin-waiting (crude) or by disabling
Interrupts (also crude, and can only be done in the kernel)
What else is there

— semaphores are a slightly higher level abstraction
 less crude implementation too

— monitors are significantly higher level
* utilize programming language support to reduce errors

27

Semaphores

« Semaphore = a synchronization primitive
— higher level of abstraction than locks

— Invented by Dijkstra in 1968, as part of the THE operating
system

A semaphore Is:
— avariable that is manipulated through two operations,
P and V (Dutch for “test” and “increment”)

* P(sem) (wait/down)

— block until sem > 0, then subtract 1 from sem and proceed
* V(sem) (signal/up)

— add 1 to sem

« Do these operations atomically

28

Blocking in semaphores

« Each semaphore has an associated queue of threads

— when P(sem) is called by a thread,

 if sem was “available” (>0), decrement sem and let thread
continue

 if sem was “unavailable” (<=0), place thread on associated
queue; dispatch some other runnable thread
— when V(sem) is called by a thread

« if thread(s) are waiting on the associated queue, unblock one
— place it on the ready queue
— might as well let the “V-ing” thread continue execution
— or not, depending on priority
» otherwise (when no threads are waiting on the sem),
increment sem
— the signal is “remembered” for next time P(sem) is called

« Semaphores thus have history

29

Abstract implementation

— P/wait/down(sem)

« acquire “real” mutual exclusion

— if sem is “available” (>0), decrement sem; release “real” mutual
exclusion; let thread continue

— otherwise, place thread on associated queue; release “real”
mutual exclusion; run some other thread

— V/signal/up(sem)

« acquire “real” mutual exclusion

— if thread(s) are waiting on the associated queue, unblock one
(place it on the ready queue)

— if no threads are on the queue, sem is incremented
» the signal is “remembered” for next time P(sem) is called

* release “real” mutual exclusion
 [the “V-ing” thread continues execution or is preempted]

30

Two types of semaphores

« Binary semaphore (aka mutex semaphore)
— sem s initialized to 1

— guarantees mutually exclusive access to resource (e.g., a
critical section of code)

— only one thread/process allowed entry at a time

« Counting semaphore

— sem s initialized to N

* N = number of units available
— represents resources with many (identical) units available
— allows threads to enter as long as more units are available

31

Usage

From the programmer’s perspective, P and V on a binary
semaphore are just like Acquire and Release on a lock
P(sem)

do whatever stuff requires mutual exclusion; could conceivably
be a lot of code

V(éem)
— same lack of programming language support for correct usage

Important differences in the underlying implementation, however

32

Pressing questions

How do you acquire “real” mutual exclusion?

Why is this any better than using a spinlock (test-and-set) or
disabling interrupts (assuming you’re in the kernel) in lieu of a
semaphore?

What if some bozo issues an extra V?

What if some bozo forgets to P?

33

Example: Bounded buffer problem

« AKA “producer/consumer” problem
— there is a buffer in memory with N entries
— producer threads insert entries into it (one at a time)
— consumer threads remove entries from it (one at a time)

« Threads are concurrent

— S0, we must use synchronization constructs to control
access to shared variables describing buffer state

A
= |] 3

tail head

34

Bounded buffer using semaphores
(both binary and counting)

var mutex: semaphore =1 ;mutual exclusion to shared data
empty: semaphore =n ;count of empty buffers (all empty to start)

full: semaphore = 0 ;count of full buffers (none full to start)
producer:
P(empty) ; one fewer buffer, block if none available
P(mutex) ; get access to pointers
<add item to buffer>
V(mutex) ; done with pointers
V(full) ; note one more full buffer
consumer:
P(full) ;wait until there’s a full buffer
P(mutex) ;get access to pointers
<remove item from buffer>
V(mutex) ; done with pointers
V(empty) ; hote there’s an empty buffer
<use the item>

Note 1:
| have elided all the code
concerning which is the first
full buffer, which is the last
full buffer, etc.

Note 2:
Try to figure out how to do
this without using counting
semaphores!

35

Example: Readers/\Writers

« Description:

A single object is shared among several threads/processes
Sometimes a thread just reads the object
Sometimes a thread updates (writes) the object

We can allow multiple readers at a time
e why?

We can only allow one writer at a time
e why?

36

Readers/Writers using semaphores

var mutex: semaphore =1 ; controls access to readcount
wrt: semaphore = 1 ; control entry for a writer or first reader
readcount: integer =0 ; number of active readers
writer:
P(wrt) ; any writers or readers?
<perform write operation>
V(wrt) ; allow others
reader:
P(mutex) ; ensure exclusion
readcount++ ; one more reader
if readcount == 1 then P(wrt) ; if we're the first, synch with writers
V(mutex)
<perform read operation>
P(mutex) ; ensure exclusion
readcount-- ; one fewer reader
if readcount == 0 then V(wrt) ; N0 more readers, allow a writer
V(mutex)

37

Readers/Writers notes

Notes:
— the first reader blocks on P(wrt) if there is a writer
« any other readers will then block on P(mutex)

— If a walting writer exists, the last reader to exit signals the
waiting writer

« can new readers get in while a writer is waiting?

— when writer exits, if there is both a reader and writer waiting,
which one goes next?

38

Semaphores vs. Locks

Threads that are blocked at the level of program logic are
placed on queues, rather than busy-waiting

Busy-waiting may be used for the “real” mutual exclusion
required to implement P and V

— but these are very short critical sections — totally independent of
program logic

In the not-very-interesting case of a thread package
Implemented in an address space “powered by” only a single
kernel thread, it's even easier that this

39

Problems with semaphores (and locks)

« They can be used to solve any of the traditional
synchronization problems, but:

— semaphores are essentially shared global variables
« can be accessed from anywhere (bad software engineering)

— there is no connection between the semaphore and the data
being controlled by it

— used for both critical sections (mutual exclusion) and for
coordination (scheduling)

— no control over their use, no guarantee of proper usage

e Thus, they are prone to bugs

— another (better?) approach: use programming language
support

40

One More Approach: Monitors

A monitor is a programming language construct that supports
controlled access to shared data

— synchronization code is added by the compiler
« why does this help?

A monitor encapsulates:
— shared data structures
— procedures that operate on the shared data

— synchronization between concurrent threads that invoke those
procedures

Data can only be accessed from within the monitor, using the
provided procedures
— protects the data from unstructured access

Addresses the key usabillity issues that arise with semaphores

A monitor

waiting queue of threads
trying to enter the monitor

l

at most one thread
In monitor at a
time

\ 4

Y

shared data

operations (methods)

42

Monitor facilities

o “Automatic” mutual exclusion

— only one thread can be executing inside at any time

 thus, synchronization is implicitly associated with the monitor — it
“‘comes for free”

— If a second thread tries to execute a monitor procedure, it blocks
until the first has left the monitor

* more restrictive than semaphores
* but easier to use (most of the time)

« But, there’s a problem...

43

Example: Bounded Buffer Scenario

Produce()

Consume()

 Buffer is empty

* Now what?

44

Example: Bounded Buffer Scenario

Produce()

Consume()

 Buffer is empty
* Now what?

45

Condition variables

« A place to wait; sometimes called a rendezvous point

* "Required” for monitors

— So useful they’re often provided even when monitors aren’t
available

« Three operations on condition variables
— wait(c)
» release monitor lock, so somebody else can get in
» wait for somebody else to signal condition
 thus, condition variables have associated wait queues
— signal(c)
» wake up at most one waiting thread

« if no waiting threads, signal is lost
— this is different than semaphores: no history!

— broadcast(c)
« wake up all waiting threads

46

Bounded buffer using (Hoare) monitors

Monitor bounded_ buffer {
buffer resources[N];
condition not_full, not_empty;

produce(resource X) {
if (array ‘fesources”is full, determined maybe by a count)
wait(not_full);
Insert “x” in array “resources”
signal(not_empty);

}

consume(resource *x) {
if (array ‘fesources”is empty, determined maybe by a count)
wait(not_empty);
*X = get resource from array ‘fesources”
signal(not_full);

}

47

Runtime system calls for (Hoare) monitors

EnterMonitor(m) {guarantee mutual exclusion}
ExitMonitor(m) {hit the road, letting someone else run}
Wait(c) {step out until condition satisfied}

Signal(c) {if someone’s waiting, step out and let him run}

48

Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) { EnterMonitor

if (array ‘fesources”is full, determined maybe by a count)
wait(not_full);

Insert “x” in array “resources”

signal(not_empty); ExitMonitor

}

procedure get_entry(resource *Xx) { EnterMonitor

if (array ‘fesources”is empty, determined maybe by a count)
wait(not_empty);

*X = get resource from array ‘resources”

signal(not_full); ExitMonitor

}

49

There is a subtle issue with that code...

Who runs when the signal() is done and there is a thread waiting
on the condition variable?

Hoare monitors: signal(c) means
— run waiter immediately
— signaller blocks immediately
« condition guaranteed to hold when waiter runs

 but, signaller must restore monitor invariants before signalling!
— cannot leave a mess for the waiter, who will run immediately!

Mesa monitors: signal(c) means
— waiter is made ready, but the signaller continues
« waiter runs when signaller leaves monitor (or waits)
— signaller need not restore invariant until it leaves the monitor

— being woken up is only a hint that something has changed
 signalled condition may no longer hold
» must recheck conditional case

50

Hoare vs. Mesa Monitors

Hoare monitors: | if (notReady) wait (c)

Mesa monitors; L["Pile (notReady) wait (c)

Mesa monitors easier to use
— more efficient: fewer context switches
— directly supports broadcast

Hoare monitors leave less to chance

— when wake up, condition guaranteed to be what you expect

51

Runtime system calls for Hoare monitors

« EnterMonitor(m) {guarantee mutual exclusion}
— 1If m occupied, insert caller into queue m
— else mark as occupied, insert caller into ready queue
— choose somebody to run

« ExitMonitor(m) {hit the road, letting someone else run}
— If queue m is empty, then mark m as unoccupied
— else move a thread from queue m to the ready queue
— Insert caller in ready queue
— choose someone to run

52

Runtime system calls for Hoare monitors
(cont'd)

Wait(c) {step out until condition satisfied}
— If queue m is empty, then mark m as unoccupied
— else move a thread from queue m to the ready queue
— put the caller on queue c
— choose someone to run

Signal(c) {if someone’s waiting, step out and let him run}

— 1f queue c is empty then put the caller on the ready queue

— else move a thread from gueue c to the ready queue, and put the
caller into queue m

— choose someone to run

53

Runtime system calls for Mesa monitors

EnterMonitor(m) {guarantee mutual exclusion}

ExitMonitor(m) {hit the road, letting someone else run}

Wait(c) {step out until condition satisfied}

Signal(c) {if someone’s waiting, give him a shot after I'm
done}

— 1f queue c is occupied, move one thread from queue c to queue m
— return to caller

54

* Broadcast(c) {food fight!'}

— move all threads on queue c onto queue m
— return to caller

55

Monitor Summary

« Language supports monitors

« Compiler understands them

— compiler inserts calls to runtime routines for
* monitor entry
* monitor exit
* signal
« Wait
— Language/object encapsulation ensures correctness

« Sometimes! With conditions you STILL need to think about
synchronization

* Runtime system implements these routines
— moves threads on and off queues
— ensures mutual exclusion!

56

