
CSE 451: Operating Systems

Winter 2013

Synchronization

Gary Kimura

2

Synchronization

• Threads cooperate in multithreaded programs

– to share resources, access shared data structures

• e.g., threads accessing a memory cache in a web server

– also, to coordinate their execution

• e.g., a disk reader thread hands off blocks to a network writer

thread through a circular buffer

disk

reader

thread

network

writer

thread

circular

buffer

3

• For correctness, we have to control this cooperation

– must assume threads interleave executions arbitrarily and at
different rates

• Modern OS’s are preemptive

• Most new machines are multicore

• scheduling is not under application writers’ control (except for real-time,
but that’s not of interest here).

• We control cooperation using synchronization

– enables us to restrict the interleaving of executions

• Note: this also applies to processes, not just threads

– (I’ll almost never say “process” again!)

• It also applies across machines in a distributed system (Big
Research Topic)

Synchronization

4

Shared resources

• We’ll focus on coordinating access to shared

resources

– basic problem:

• two concurrent threads are accessing a shared variable

• if the variable is read/modified/written by both threads, then

access to the variable must be controlled

• otherwise, unexpected results may occur

• Over the next several lectures, we’ll look at:

– mechanisms to control access to shared resources

• low level mechanisms like locks

• higher level mechanisms like mutexes, semaphores, monitors,

and condition variables

– patterns for coordinating access to shared resources

• bounded buffer, producer-consumer, …

5

The classic example

• Suppose we have to implement a function to

withdraw money from a bank account:

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

• Now suppose that you and your S.O. share a bank

account with a balance of $100.00

– what happens if you both go to separate ATM machines, and

simultaneously withdraw $10.00 from the account?

6

• Represent the situation by creating a separate thread

for each person to do the withdrawals

– have both threads run on the same bank mainframe:

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

7

Interleaved schedules

• The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
– who’s happy, the bank or you?

• How often is this unfortunate sequence likely to
occur?

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

put_balance(account, balance);

Execution sequence

as seen by CPU

context switch

context switch

8

• Which interleavings are ok? Which are not?

Other Execution Orders

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

int withdraw(account, amount) {

 int balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 return balance;

}

9

int xfer(from, to, amt) {

 int bal = withdraw(from, amt);

 deposit(to, amt);

 return bal;

}

How About Now?

int xfer(from, to, amt) {

 int bal = withdraw(from, amt);

 deposit(to, amt);

 return bal;

}

10

 i++;

And This?

 i++;

11

The crux of the matter

• The problem is that two concurrent threads (or

processes) access a shared resource (account)

without any synchronization

– creates a race condition

• output is non-deterministic, depends on timing

• We need mechanisms for controlling access to

shared resources in the face of concurrency

– so we can reason about the operation of programs

• essentially, re-introducing determinism

• Synchronization is necessary for any shared data

structure

– buffers, queues, lists, hash tables, scalars, …

12

What resources are shared?

• Local variables are not shared

– refer to data on the stack, each thread has its own stack

– never pass/share/store a pointer to a local variable on

another thread’s stack!

• Global variables are shared

– stored in the static data segment, accessible by any thread

• Dynamic objects are shared

– stored in the heap, shared if you can name it

• in C, can conjure up the pointer

– e.g., void *x = (void *) 0xDEADBEEF

• in Java/C#, strong typing prevents this

– must pass references explicitly

13

Mutual exclusion

• We want to use mutual exclusion to synchronize

access to shared resources

• Mutual exclusion makes reasoning about program

behavior easier

– making reasoning easier leads to fewer bugs

• Code that uses mutual exclusion to synchronize its

execution is called a critical section

– only one thread at a time can execute in the critical section

– all other threads are forced to wait on entry

– when a thread leaves a critical section, another can enter

14

Critical section requirements

• Critical sections have the following requirements

– mutual exclusion

• at most one thread is in the critical section

– progress

• if thread T is outside the critical section, then T cannot prevent

thread S from entering the critical section

– bounded waiting (no starvation)

• if thread T is waiting on the critical section, then T will

eventually enter the critical section

– assumes threads eventually leave critical sections

• vs. fairness?

– performance

• the overhead of entering and exiting the critical section is small

with respect to the work being done within it

15

Mechanisms for building critical sections

• Locks

– very primitive, minimal semantics; used to build others

• Semaphores

– basic, easy to get the hang of, hard to program with

• Monitors

– high level, requires language support, implicit operations

– easy to program with; Java “synchronized()” as an

example

• Messages

– simple model of communication and synchronization based

on (atomic) transfer of data across a channel

– direct application to distributed systems (SOAP, RPC)

16

Locks

• A lock is a object (in memory) that provides the following two

operations:

– acquire(): a thread calls this before entering a critical section

– release(): a thread calls this after leaving a critical section

• Threads pair up calls to acquire() and release()

– between acquire()and release(), the thread holds the lock

– acquire() does not return until the caller holds the lock

• at most one thread can hold a lock at a time (usually)

– so: what can happen if the calls aren’t paired?

• Two basic flavors of locks

– spinlock

– blocking (a.k.a. “mutex”)

17

Using locks

• What happens when green tries to acquire the lock?

• Why is the “return” outside the critical section?

– is this ok?

int withdraw(account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 release(lock);

 return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);

release(lock);

acquire(lock)

c
ri
ti
c
a

l

s
e

c
ti
o

n

18

Spinlocks

• How do we implement locks? Here’s one attempt:

• Why doesn’t this work?

– where is the race condition?

struct lock {

 int held = 0;

}

void acquire(lock) {

 while (lock->held);

 lock->held = 1;

}

void release(lock) {

 lock->held = 0;

}

the caller “busy-waits”,

or spins, for lock to be

released hence spinlock

19

Implementing locks (cont.)

• Problem is that implementation of locks has critical

sections, too!

– the acquire/release must be atomic

• atomic == executes as though it could not be interrupted

• code that executes “all or nothing”

• Need help from the hardware

– disable/enable interrupts

• to prevent context switches

– atomic instructions

• test-and-set, compare-and-swap, …

– multiple processors?

20

Spinlocks redux: Test-and-Set

• CPU provides the following as one atomic instruction:

• Remember, this is a single instruction…

bool test_and_set(bool *flag) {

 bool old = *flag;

 *flag = True;

 return old;

}

21

Spinlocks redux: Test-and-Set

• So, to fix our broken spinlocks, do:

– mutual exclusion?

– progress?

– bounded waiting?

– performance?

struct lock {

 int held = 0;

}

void acquire(lock) {

 while(test_and_set(&lock->held));

}

void release(lock) {

 lock->held = 0;

}

22

Real World Example

• Windows XP AcquireSpinlock

AcquireSpinlock:

;

; Attempt to assert the lock

;

 lock bts dword ptr [LockAddress], 0

 jc SpinLabel ; spinlock owned

 ret

SpinLabel:

;

; Was spinlock cleared?

;

 test dword ptr [LockAddress], 1

 jz AcquireSpinlock

 YIELD

 jmp Spinlabel

; ...

23

Reminder of use …

• How does a thread blocked on an “acquire” (that is,

stuck in a test-and-set loop) yield the CPU?

– calls yield() (spin-then-block)

– there’s an involuntary context switch

int withdraw(account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance -= amount;

 put_balance(account, balance);

 release(lock);

 return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);

release(lock);

acquire(lock)

c
ri
ti
c
a

l

s
e

c
ti
o

n

24

Problems with spinlocks

• Spinlocks work, but are horribly wasteful!

– if a thread is spinning on a lock, the thread holding the lock

cannot make progress

– And neither can anyone else! Why?

• Only want spinlocks as primitives to build higher-level

synchronization constructs

– Why is this okay?

• When might the above points be misleading?

25

Another approach: Disabling interrupts

struct lock {

}

void acquire(lock) {

 cli(); // disable interrupts

}

void release(lock) {

 sti(); // reenable interrupts

}

26

Problems with disabling interrupts

• Only available to the kernel

– Can’t allow user-level to disable interrupts!

• Insufficient on a multiprocessor

– Each processor has its own interrupt mechanism

• “Long” periods with interrupts disabled can wreak

havoc with devices

• Just as with spinlocks, you only want to use disabling

of interrupts to build higher-level synchronization

constructs

27

Simple Locks

• Locks are the lowest-level mechanism

– very primitive in terms of semantics – error-prone

– implemented by spin-waiting (crude) or by disabling

interrupts (also crude, and can only be done in the kernel)

• What else is there

– semaphores are a slightly higher level abstraction

• less crude implementation too

– monitors are significantly higher level

• utilize programming language support to reduce errors

28

Semaphores

• Semaphore = a synchronization primitive

– higher level of abstraction than locks

– invented by Dijkstra in 1968, as part of the THE operating

system

• A semaphore is:

– a variable that is manipulated through two operations,

P and V (Dutch for “test” and “increment”)

• P(sem) (wait/down)

– block until sem > 0, then subtract 1 from sem and proceed

• V(sem) (signal/up)

– add 1 to sem

• Do these operations atomically

29

Blocking in semaphores

• Each semaphore has an associated queue of threads

– when P(sem) is called by a thread,

• if sem was “available” (>0), decrement sem and let thread

continue

• if sem was “unavailable” (<=0), place thread on associated

queue; dispatch some other runnable thread

– when V(sem) is called by a thread

• if thread(s) are waiting on the associated queue, unblock one

– place it on the ready queue

– might as well let the “V-ing” thread continue execution

– or not, depending on priority

• otherwise (when no threads are waiting on the sem),

increment sem

– the signal is “remembered” for next time P(sem) is called

• Semaphores thus have history

30

Abstract implementation

– P/wait/down(sem)

• acquire “real” mutual exclusion

– if sem is “available” (>0), decrement sem; release “real” mutual

exclusion; let thread continue

– otherwise, place thread on associated queue; release “real”

mutual exclusion; run some other thread

– V/signal/up(sem)

• acquire “real” mutual exclusion

– if thread(s) are waiting on the associated queue, unblock one

(place it on the ready queue)

– if no threads are on the queue, sem is incremented

» the signal is “remembered” for next time P(sem) is called

• release “real” mutual exclusion

• [the “V-ing” thread continues execution or is preempted]

31

Two types of semaphores

• Binary semaphore (aka mutex semaphore)

– sem is initialized to 1

– guarantees mutually exclusive access to resource (e.g., a

critical section of code)

– only one thread/process allowed entry at a time

• Counting semaphore

– sem is initialized to N

• N = number of units available

– represents resources with many (identical) units available

– allows threads to enter as long as more units are available

32

Usage

• From the programmer’s perspective, P and V on a binary

semaphore are just like Acquire and Release on a lock

P(sem)
 .
 .
 .
 do whatever stuff requires mutual exclusion; could conceivably

 be a lot of code
 .
 .
 .
V(sem)

– same lack of programming language support for correct usage

• Important differences in the underlying implementation, however

33

Pressing questions

• How do you acquire “real” mutual exclusion?

• Why is this any better than using a spinlock (test-and-set) or

disabling interrupts (assuming you’re in the kernel) in lieu of a

semaphore?

• What if some bozo issues an extra V?

• What if some bozo forgets to P?

34

Example: Bounded buffer problem

• AKA “producer/consumer” problem

– there is a buffer in memory with N entries

– producer threads insert entries into it (one at a time)

– consumer threads remove entries from it (one at a time)

• Threads are concurrent

– so, we must use synchronization constructs to control

access to shared variables describing buffer state

head tail

35

Bounded buffer using semaphores

(both binary and counting)

Note 1:

I have elided all the code

concerning which is the first

full buffer, which is the last

full buffer, etc.

Note 2:

Try to figure out how to do

this without using counting

semaphores!

var mutex: semaphore = 1 ;mutual exclusion to shared data

 empty: semaphore = n ;count of empty buffers (all empty to start)

 full: semaphore = 0 ;count of full buffers (none full to start)

producer:

 P(empty) ; one fewer buffer, block if none available

 P(mutex) ; get access to pointers

 <add item to buffer>

 V(mutex) ; done with pointers

 V(full) ; note one more full buffer

consumer:

 P(full) ;wait until there’s a full buffer

 P(mutex) ;get access to pointers

 <remove item from buffer>

 V(mutex) ; done with pointers

 V(empty) ; note there’s an empty buffer

 <use the item>

36

Example: Readers/Writers

• Description:

– A single object is shared among several threads/processes

– Sometimes a thread just reads the object

– Sometimes a thread updates (writes) the object

– We can allow multiple readers at a time

• why?

– We can only allow one writer at a time

• why?

37

Readers/Writers using semaphores

var mutex: semaphore = 1 ; controls access to readcount

 wrt: semaphore = 1 ; control entry for a writer or first reader

 readcount: integer = 0 ; number of active readers

writer:

 P(wrt) ; any writers or readers?

 <perform write operation>

 V(wrt) ; allow others

reader:

 P(mutex) ; ensure exclusion

 readcount++ ; one more reader

 if readcount == 1 then P(wrt) ; if we’re the first, synch with writers

 V(mutex)

 <perform read operation>

 P(mutex) ; ensure exclusion

 readcount-- ; one fewer reader

 if readcount == 0 then V(wrt) ; no more readers, allow a writer

 V(mutex)

38

Readers/Writers notes

• Notes:

– the first reader blocks on P(wrt) if there is a writer

• any other readers will then block on P(mutex)

– if a waiting writer exists, the last reader to exit signals the

waiting writer

• can new readers get in while a writer is waiting?

– when writer exits, if there is both a reader and writer waiting,

which one goes next?

39

Semaphores vs. Locks

• Threads that are blocked at the level of program logic are

placed on queues, rather than busy-waiting

• Busy-waiting may be used for the “real” mutual exclusion

required to implement P and V

– but these are very short critical sections – totally independent of

program logic

• In the not-very-interesting case of a thread package

implemented in an address space “powered by” only a single

kernel thread, it’s even easier that this

40

Problems with semaphores (and locks)

• They can be used to solve any of the traditional

synchronization problems, but:

– semaphores are essentially shared global variables

• can be accessed from anywhere (bad software engineering)

– there is no connection between the semaphore and the data

being controlled by it

– used for both critical sections (mutual exclusion) and for

coordination (scheduling)

– no control over their use, no guarantee of proper usage

• Thus, they are prone to bugs

– another (better?) approach: use programming language

support

41

One More Approach: Monitors

• A monitor is a programming language construct that supports
controlled access to shared data
– synchronization code is added by the compiler

• why does this help?

• A monitor encapsulates:
– shared data structures

– procedures that operate on the shared data

– synchronization between concurrent threads that invoke those
procedures

• Data can only be accessed from within the monitor, using the
provided procedures
– protects the data from unstructured access

• Addresses the key usability issues that arise with semaphores

42

A monitor

shared data

waiting queue of threads

trying to enter the monitor

operations (methods) at most one thread

in monitor at a

time

43

Monitor facilities

• “Automatic” mutual exclusion

– only one thread can be executing inside at any time

• thus, synchronization is implicitly associated with the monitor – it

“comes for free”

– if a second thread tries to execute a monitor procedure, it blocks

until the first has left the monitor

• more restrictive than semaphores

• but easier to use (most of the time)

• But, there’s a problem…

44

Example: Bounded Buffer Scenario

Produce()

Consume()

• Buffer is empty

• Now what?

45

Example: Bounded Buffer Scenario

Produce()

Consume()

• Buffer is empty

• Now what?

46

Condition variables

• A place to wait; sometimes called a rendezvous point

• “Required” for monitors
– So useful they’re often provided even when monitors aren’t

available

• Three operations on condition variables
– wait(c)

• release monitor lock, so somebody else can get in

• wait for somebody else to signal condition

• thus, condition variables have associated wait queues

– signal(c)

• wake up at most one waiting thread

• if no waiting threads, signal is lost

– this is different than semaphores: no history!

– broadcast(c)

• wake up all waiting threads

47

Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {

 buffer resources[N];

 condition not_full, not_empty;

produce(resource x) {

 if (array “resources” is full, determined maybe by a count)

 wait(not_full);

 insert “x” in array “resources”

 signal(not_empty);

 }

 consume(resource *x) {

 if (array “resources” is empty, determined maybe by a count)

 wait(not_empty);

 *x = get resource from array “resources”

 signal(not_full);

 }

48

Runtime system calls for (Hoare) monitors

• EnterMonitor(m) {guarantee mutual exclusion}

• ExitMonitor(m) {hit the road, letting someone else run}

• Wait(c) {step out until condition satisfied}

• Signal(c) {if someone’s waiting, step out and let him run}

49

Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {

 buffer resources[N];

 condition not_full, not_empty;

 procedure add_entry(resource x) {

 if (array “resources” is full, determined maybe by a count)

 wait(not_full);

 insert “x” in array “resources”

 signal(not_empty);

 }

 procedure get_entry(resource *x) {

 if (array “resources” is empty, determined maybe by a count)

 wait(not_empty);

 *x = get resource from array “resources”

 signal(not_full);

 }

EnterMonitor

EnterMonitor

ExitMonitor

ExitMonitor

50

• Who runs when the signal() is done and there is a thread waiting
on the condition variable?

• Hoare monitors: signal(c) means

– run waiter immediately

– signaller blocks immediately

• condition guaranteed to hold when waiter runs

• but, signaller must restore monitor invariants before signalling!

– cannot leave a mess for the waiter, who will run immediately!

• Mesa monitors: signal(c) means

– waiter is made ready, but the signaller continues

• waiter runs when signaller leaves monitor (or waits)

– signaller need not restore invariant until it leaves the monitor

– being woken up is only a hint that something has changed

• signalled condition may no longer hold

• must recheck conditional case

There is a subtle issue with that code…

51

• Hoare monitors:

• Mesa monitors:

• Mesa monitors easier to use

– more efficient: fewer context switches

– directly supports broadcast

• Hoare monitors leave less to chance

– when wake up, condition guaranteed to be what you expect

if (notReady) wait(c)

while (notReady) wait(c)

Hoare vs. Mesa Monitors

52

Runtime system calls for Hoare monitors

• EnterMonitor(m) {guarantee mutual exclusion}

– if m occupied, insert caller into queue m

– else mark as occupied, insert caller into ready queue

– choose somebody to run

• ExitMonitor(m) {hit the road, letting someone else run}

– if queue m is empty, then mark m as unoccupied

– else move a thread from queue m to the ready queue

– insert caller in ready queue

– choose someone to run

53

• Wait(c) {step out until condition satisfied}

– if queue m is empty, then mark m as unoccupied

– else move a thread from queue m to the ready queue

– put the caller on queue c

– choose someone to run

• Signal(c) {if someone’s waiting, step out and let him run}

– if queue c is empty then put the caller on the ready queue

– else move a thread from queue c to the ready queue, and put the

caller into queue m

– choose someone to run

Runtime system calls for Hoare monitors

(cont’d)

54

Runtime system calls for Mesa monitors

• EnterMonitor(m) {guarantee mutual exclusion}

– …

• ExitMonitor(m) {hit the road, letting someone else run}

– …

• Wait(c) {step out until condition satisfied}

– …

• Signal(c) {if someone’s waiting, give him a shot after I’m

done}

– if queue c is occupied, move one thread from queue c to queue m

– return to caller

55

• Broadcast(c) {food fight!}

– move all threads on queue c onto queue m

– return to caller

56

Monitor Summary

• Language supports monitors

• Compiler understands them

– compiler inserts calls to runtime routines for

• monitor entry

• monitor exit

• signal

• Wait

– Language/object encapsulation ensures correctness

• Sometimes! With conditions you STILL need to think about

synchronization

• Runtime system implements these routines

– moves threads on and off queues

– ensures mutual exclusion!

