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Synchronization 

• Threads cooperate in multithreaded programs 

– to share resources, access shared data structures 

• e.g., threads accessing a memory cache in a web server 

– also, to coordinate their execution 

• e.g., a disk reader thread hands off blocks to a network writer 

thread through a circular buffer 

disk 

reader 

thread 

network 

writer 

thread 

circular 

buffer 
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• For correctness, we have to control this cooperation 

– must assume threads interleave executions arbitrarily and at 
different rates 

• Modern OS’s are preemptive 

• Most new machines are multicore 

• scheduling is not under application writers’ control (except for real-time, 
but that’s not of interest here). 
 

• We control cooperation using synchronization 

– enables us to restrict the interleaving of executions 

 

• Note: this also applies to processes, not just threads 

– (I’ll almost never say “process” again!) 
 

• It also applies across machines in a distributed system (Big 
Research Topic) 

Synchronization 
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Shared resources 

• We’ll focus on coordinating access to shared 

resources 

– basic problem: 

• two concurrent threads are accessing a shared variable 

• if the variable is read/modified/written by both threads, then 

access to the variable must be controlled 

• otherwise, unexpected results may occur 

• Over the next several lectures, we’ll look at: 

– mechanisms to control access to shared resources 

• low level mechanisms like locks 

• higher level mechanisms like mutexes, semaphores, monitors, 

and condition variables 

– patterns for coordinating access to shared resources 

• bounded buffer, producer-consumer, … 
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The classic example 

• Suppose we have to implement a function to 

withdraw money from a bank account: 

 
int withdraw(account, amount) { 

  int balance = get_balance(account); 

  balance -= amount; 

  put_balance(account, balance); 

  return balance; 

} 

• Now suppose that you and your S.O. share a bank 

account with a balance of $100.00 

– what happens if you both go to separate ATM machines, and 

simultaneously withdraw $10.00 from the account? 
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• Represent the situation by creating a separate thread 

for each person to do the withdrawals 

– have both threads run on the same bank mainframe: 

 

 

 

 

 

 

int withdraw(account, amount) { 

  int balance = get_balance(account); 

  balance -= amount; 

  put_balance(account, balance); 

  return balance; 

} 

int withdraw(account, amount) { 

  int balance = get_balance(account); 

  balance -= amount; 

  put_balance(account, balance); 

  return balance; 

} 
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Interleaved schedules 

• The problem is that the execution of the two threads 
can be interleaved, assuming preemptive scheduling: 

 

 

 

 

 

 

• What’s the account balance after this sequence? 
– who’s happy, the bank or you?  

• How often is this unfortunate sequence likely to 
occur? 

balance = get_balance(account); 

balance -= amount; 

balance = get_balance(account); 

balance -= amount; 

put_balance(account, balance); 

put_balance(account, balance); 

Execution sequence 

as seen by CPU 

context switch 

context switch 
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• Which interleavings are ok?  Which are not? 

 

 

 

 

 

 

Other Execution Orders 

int withdraw(account, amount) { 

  int balance = get_balance(account); 

  balance -= amount; 

  put_balance(account, balance); 

  return balance; 

} 

int withdraw(account, amount) { 

  int balance = get_balance(account); 

  balance -= amount; 

  put_balance(account, balance); 

  return balance; 

} 
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int xfer(from, to, amt) { 

  int bal = withdraw(from, amt); 

  deposit( to, amt ); 

  return bal; 

} 

How About Now? 

int xfer(from, to, amt) { 

  int bal = withdraw(from, amt); 

  deposit( to, amt ); 

  return bal; 

} 
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  i++; 

And This? 

  i++; 
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The crux of the matter 

• The problem is that two concurrent threads (or 

processes) access a shared resource (account) 

without any synchronization 

– creates a race condition 

• output is non-deterministic, depends on timing 

• We need mechanisms for controlling access to 

shared resources in the face of concurrency 

– so we can reason about the operation of programs 

• essentially, re-introducing determinism 

• Synchronization is necessary for any shared data 

structure 

– buffers, queues, lists, hash tables, scalars, … 
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What resources are shared? 

• Local variables are not shared 

– refer to data on the stack, each thread has its own stack 

– never pass/share/store a pointer to a local variable on 

another thread’s stack! 

• Global variables are shared 

– stored in the static data segment, accessible by any thread 

• Dynamic objects are shared 

– stored in the heap, shared if you can name it 

• in C, can conjure up the pointer 

–  e.g.,  void *x = (void *) 0xDEADBEEF 

• in Java/C#, strong typing prevents this 

– must pass references explicitly 
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Mutual exclusion 

• We want to use mutual exclusion to synchronize 

access to shared resources 

• Mutual exclusion makes reasoning about program 

behavior easier 

– making reasoning easier leads to fewer bugs 

• Code that uses mutual exclusion to synchronize its 

execution is called a critical section 

– only one thread at a time can execute in the critical section 

– all other threads are forced to wait on entry 

– when a thread leaves a critical section, another can enter 
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Critical section requirements 

• Critical sections have the following requirements 

– mutual exclusion 

• at most one thread is in the critical section 

– progress 

• if thread T is outside the critical section, then T cannot prevent 

thread S from entering the critical section 

– bounded waiting (no starvation) 

• if thread T is waiting on the critical section, then T will 

eventually enter the critical section 

– assumes threads eventually leave critical sections 

• vs. fairness? 

– performance 

• the overhead of entering and exiting the critical section is small 

with respect to the work being done within it 
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Mechanisms for building critical sections 

• Locks 

– very primitive, minimal semantics; used to build others 

• Semaphores 

– basic, easy to get the hang of, hard to program with 

• Monitors 

– high level, requires language support, implicit operations 

– easy to program with; Java “synchronized()” as an 

example 

• Messages 

– simple model of communication and synchronization based 

on (atomic) transfer of data across a channel 

– direct application to distributed systems (SOAP, RPC) 
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Locks 

• A lock is a object (in memory) that provides the following two 

operations: 

– acquire(): a thread calls this before entering a critical section 

– release(): a thread calls this after leaving a critical section 

• Threads pair up calls to acquire() and release() 

– between acquire()and release(), the thread holds the lock 

– acquire() does not return until the caller holds the lock 

• at most one thread can hold a lock at a time (usually) 

– so: what can happen if the calls aren’t paired? 

• Two basic flavors of locks 

– spinlock 

– blocking  (a.k.a. “mutex”) 
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Using locks 

• What happens when green tries to acquire the lock? 

• Why is the “return” outside the critical section? 

– is this ok? 

int withdraw(account, amount) { 

  acquire(lock); 

  balance = get_balance(account); 

  balance -= amount; 

  put_balance(account, balance); 

  release(lock); 

  return balance; 

} 

acquire(lock) 

balance = get_balance(account); 

balance -= amount; 

balance = get_balance(account); 

balance -= amount; 

put_balance(account, balance); 

release(lock); 

put_balance(account, balance); 

release(lock); 

acquire(lock) 

c
ri
ti
c
a

l 

s
e

c
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o

n
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Spinlocks 

• How do we implement locks?  Here’s one attempt: 

 

 

 

 

 

 

 

• Why doesn’t this work? 

– where is the race condition? 

struct lock { 

  int held = 0; 

} 

void acquire(lock) { 

   while (lock->held); 

   lock->held = 1; 

} 

void release(lock) { 

  lock->held = 0; 

} 

the caller “busy-waits”, 

or spins, for lock to be 

released  hence spinlock 
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Implementing locks (cont.) 

• Problem is that implementation of locks has critical 

sections, too! 

– the acquire/release must be atomic 

• atomic == executes as though it could not be interrupted 

• code that executes “all or nothing” 

• Need help from the hardware 

– disable/enable interrupts 

• to prevent context switches 

– atomic instructions 

• test-and-set, compare-and-swap, … 

– multiple processors? 
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Spinlocks redux: Test-and-Set 

• CPU provides the following as one atomic instruction: 

 

 

 

 

• Remember, this is a single instruction… 

bool test_and_set(bool *flag) { 

  bool old = *flag; 

  *flag = True; 

  return old; 

} 
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Spinlocks redux: Test-and-Set 

• So, to fix our broken spinlocks, do: 

 

 

 

 

 

 

 

– mutual exclusion? 

– progress? 

– bounded waiting? 

– performance? 

struct lock { 

  int held = 0; 

} 

void acquire(lock) { 

   while(test_and_set(&lock->held)); 

} 

void release(lock) { 

  lock->held = 0; 

} 
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Real World Example 

• Windows XP AcquireSpinlock 

 

 

AcquireSpinlock: 

; 

; Attempt to assert the lock 

; 

        lock bts dword ptr [LockAddress], 0 

        jc       SpinLabel  ; spinlock owned 

        ret 

SpinLabel: 

; 

; Was spinlock cleared? 

; 

        test     dword ptr [LockAddress], 1  

        jz        AcquireSpinlock 

        YIELD 

        jmp     Spinlabel 

; ... 
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Reminder of use … 

• How does a thread blocked on an “acquire” (that is, 

stuck in a test-and-set loop) yield the CPU? 

– calls yield( ) (spin-then-block)  

– there’s an involuntary context switch 

 

int withdraw(account, amount) { 

  acquire(lock); 

  balance = get_balance(account); 

  balance -= amount; 

  put_balance(account, balance); 

  release(lock); 

  return balance; 

} 

acquire(lock) 

balance = get_balance(account); 

balance -= amount; 

balance = get_balance(account); 

balance -= amount; 

put_balance(account, balance); 

release(lock); 

put_balance(account, balance); 

release(lock); 

acquire(lock) 

c
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s
e
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n
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Problems with spinlocks 

• Spinlocks work, but are horribly wasteful! 

– if a thread is spinning on a lock, the thread holding the lock 

cannot make progress 

– And neither can anyone else! Why? 

• Only want spinlocks as primitives to build higher-level 

synchronization constructs 

– Why is this okay? 

 

 

 

• When might the above points be misleading? 
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Another approach:  Disabling interrupts 

struct lock { 

} 

void acquire(lock) { 

   cli();   // disable interrupts 

} 

void release(lock) { 

  sti();    // reenable interrupts 

} 
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Problems with disabling interrupts 

• Only available to the kernel 

– Can’t allow user-level to disable interrupts! 

• Insufficient on a multiprocessor 

– Each processor has its own interrupt mechanism 

• “Long” periods with interrupts disabled can wreak 

havoc with devices 

 

• Just as with spinlocks, you only want to use disabling 

of interrupts to build higher-level synchronization 

constructs 
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Simple Locks 

• Locks are the lowest-level mechanism 

– very primitive in terms of semantics – error-prone 

– implemented by spin-waiting (crude) or by disabling 

interrupts (also crude, and can only be done in the kernel) 

• What else is there 

– semaphores are a slightly higher level abstraction 

• less crude implementation too 

– monitors are significantly higher level 

• utilize programming language support to reduce errors 
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Semaphores 

• Semaphore = a synchronization primitive 

– higher level of abstraction than locks 

– invented by Dijkstra in 1968, as part of the THE operating 

system 

• A semaphore is: 

– a variable that is manipulated through two operations,  

P and V (Dutch for “test” and “increment”) 

• P(sem) (wait/down) 

– block until sem > 0, then subtract 1 from sem and proceed 

• V(sem) (signal/up) 

– add 1 to sem 

• Do these operations atomically  



29 

Blocking in semaphores 

• Each semaphore has an associated queue of threads 

– when P(sem) is called by a thread, 

• if sem was “available” (>0), decrement sem and let thread 

continue 

• if sem was “unavailable” (<=0), place thread on associated 

queue; dispatch some other runnable thread 

– when V(sem) is called by a thread 

• if thread(s) are waiting on the associated queue, unblock one 

– place it on the ready queue 

– might as well let the “V-ing” thread continue execution 

– or not, depending on priority 

• otherwise (when no threads are waiting on the sem),  

increment sem 

– the signal is “remembered” for next time P(sem) is called 

• Semaphores thus have history 
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Abstract implementation 

– P/wait/down(sem) 

• acquire “real” mutual exclusion 

– if sem is “available” (>0), decrement sem; release “real” mutual 

exclusion; let thread continue 

– otherwise, place thread on associated queue; release “real” 

mutual exclusion; run some other thread 

– V/signal/up(sem) 

• acquire “real” mutual exclusion 

– if thread(s) are waiting on the associated queue, unblock one 

(place it on the ready queue) 

– if no threads are on the queue, sem is incremented 

» the signal is “remembered” for next time P(sem) is called 

• release “real” mutual exclusion 

• [the “V-ing” thread continues execution or is preempted] 
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Two types of semaphores 

• Binary semaphore (aka mutex semaphore) 

– sem is initialized to 1  

– guarantees mutually exclusive access to resource (e.g., a 

critical section of code) 

– only one thread/process allowed entry at a time 

 

•  Counting semaphore 

– sem is initialized to N 

• N = number of units available 

– represents resources with many (identical) units available 

– allows threads to enter as long as more units are available 
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Usage 

• From the programmer’s perspective, P and V on a binary 

semaphore are just like Acquire and Release on a lock 

P(sem) 
 . 
 .  
 . 
 do whatever stuff requires mutual exclusion; could conceivably 

 be a lot of code 
 . 
 . 
 . 
V(sem) 

– same lack of programming language support for correct usage 

 

• Important differences in the underlying implementation, however 
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Pressing questions 

• How do you acquire “real” mutual exclusion? 

 

• Why is this any better than using a spinlock (test-and-set) or 

disabling interrupts (assuming you’re in the kernel) in lieu of a 

semaphore? 

 

• What if some bozo issues an extra V? 

 

• What if some bozo forgets to P? 
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Example: Bounded buffer problem 

• AKA “producer/consumer” problem 

– there is a buffer in memory with N entries 

– producer threads insert entries into it (one at a time) 

– consumer threads remove entries from it (one at a time) 

• Threads are concurrent 

– so, we must use synchronization constructs to control 

access to shared variables describing buffer state 

 

head tail 
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Bounded buffer using semaphores 

(both binary and counting) 

Note 1:   

I have elided all the code 

concerning which is the first 

full buffer, which is the last 

full buffer, etc. 

Note 2:  

Try to figure out how to do 

this without using counting 

semaphores! 

var mutex: semaphore = 1    ;mutual exclusion to shared data 

      empty: semaphore = n    ;count of empty buffers (all empty to start) 

      full: semaphore = 0         ;count of full buffers (none full to start) 

 

producer: 

       P(empty) ; one fewer buffer, block if none available 

       P(mutex) ; get access to pointers 

           <add item to buffer> 

       V(mutex)  ; done with pointers 

       V(full)       ; note one more full buffer 

consumer: 

       P(full)       ;wait until there’s a full buffer 

       P(mutex)  ;get access to pointers 

           <remove item from buffer> 

       V(mutex)  ; done with pointers 

       V(empty)  ; note there’s an empty buffer 

           <use the item> 
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Example: Readers/Writers 

• Description: 

– A single object is shared among several threads/processes 

– Sometimes a thread just reads the object 

– Sometimes a thread updates (writes) the object 

 

– We can allow multiple readers at a time 

• why? 

 

– We can only allow one writer at a time 

• why? 
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Readers/Writers using semaphores 

var mutex: semaphore = 1 ; controls access to readcount 

      wrt: semaphore = 1 ; control entry for a writer or first reader 

      readcount: integer = 0 ; number of active readers 

writer: 

 P(wrt)  ; any writers or readers? 

  <perform write operation> 

 V(wrt)  ; allow others 

reader: 

 P(mutex)                         ; ensure exclusion 

     readcount++                        ; one more reader 

     if readcount == 1 then P(wrt)      ; if we’re the first, synch with writers 

 V(mutex) 

  <perform read operation> 

 P(mutex)                         ; ensure exclusion 

    readcount--                        ; one fewer reader 

    if readcount == 0 then V(wrt)       ; no more readers, allow a writer 

 V(mutex) 
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Readers/Writers notes 

• Notes: 

– the first reader blocks on P(wrt) if there is a writer 

• any other readers will then block on P(mutex) 

 

– if a waiting writer exists, the last reader to exit signals the 

waiting writer 

• can new readers get in while a writer is waiting? 

 

– when writer exits, if there is both a reader and writer waiting, 

which one goes next? 
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Semaphores vs. Locks 

• Threads that are blocked at the level of program logic are 

placed on queues, rather than busy-waiting 

 

• Busy-waiting may be used for the “real” mutual exclusion 

required to implement P and V 

– but these are very short critical sections – totally independent of 

program logic 

 

• In the not-very-interesting case of a thread package 

implemented in an address space “powered by” only a single 

kernel thread, it’s even easier that this 



40 

Problems with semaphores (and locks) 

• They can be used to solve any of the traditional 

synchronization problems, but: 

– semaphores are essentially shared global variables 

• can be accessed from anywhere (bad software engineering) 

– there is no connection between the semaphore and the data 

being controlled by it 

– used for both critical sections (mutual exclusion) and for 

coordination (scheduling) 

– no control over their use, no guarantee of proper usage 

 

• Thus, they are prone to bugs 

– another (better?) approach: use programming language 

support 
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One More Approach: Monitors 

• A monitor is a programming language construct that supports 
controlled access to shared data 
– synchronization code is added by the compiler 

• why does this help? 
 

• A monitor encapsulates: 
– shared data structures 

– procedures that operate on the shared data 

– synchronization between concurrent threads that invoke those 
procedures 
 

• Data can only be accessed from within the monitor, using the 
provided procedures 
– protects the data from unstructured access 

 

• Addresses the key usability issues that arise with semaphores 
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A monitor 

shared data 

waiting queue of threads 

trying to enter the monitor 

operations (methods) at most one thread 

in monitor at a 

time 
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Monitor facilities 

• “Automatic” mutual exclusion 

– only one thread can be executing inside at any time 

• thus, synchronization is implicitly associated with the monitor – it 

“comes for free”  

– if a second thread tries to execute a monitor procedure, it blocks 

until the first has left the monitor 

• more restrictive than semaphores 

• but easier to use (most of the time) 

 

• But, there’s a problem… 
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Example: Bounded Buffer Scenario 

Produce() 

Consume() 

• Buffer is empty 

• Now what? 
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Example: Bounded Buffer Scenario 

Produce() 

Consume() 

• Buffer is empty 

• Now what? 
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Condition variables 

• A place to wait; sometimes called a rendezvous point 

• “Required” for monitors 
– So useful they’re often provided even when monitors aren’t 

available 

• Three operations on condition variables 
– wait(c) 

• release monitor lock, so somebody else can get in 

• wait for somebody else to signal condition 

• thus, condition variables have associated wait queues 

– signal(c) 

• wake up at most one waiting thread 

• if no waiting threads, signal is lost 

– this is different than semaphores: no history! 

– broadcast(c) 

• wake up all waiting threads 
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Bounded buffer using (Hoare) monitors 

Monitor bounded_buffer { 

  buffer resources[N]; 

  condition not_full, not_empty; 

 

produce(resource x) { 

    if (array “resources” is full, determined maybe by a count) 

          wait(not_full); 

    insert “x” in array “resources” 

    signal(not_empty); 

  } 
 

 consume(resource *x) { 

    if (array “resources” is empty, determined maybe by a count) 

           wait(not_empty); 

    *x = get resource from array “resources” 

    signal(not_full); 

  } 
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Runtime system calls for (Hoare) monitors 

• EnterMonitor(m) {guarantee mutual exclusion} 

• ExitMonitor(m) {hit the road, letting someone else run} 

• Wait(c) {step out until condition satisfied} 

• Signal(c) {if someone’s waiting, step out and let him run} 
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Bounded buffer using (Hoare) monitors 

Monitor bounded_buffer { 

  buffer resources[N]; 

  condition not_full, not_empty; 

 

  procedure add_entry(resource x) { 

    if (array “resources” is full, determined maybe by a count) 

      wait(not_full); 

    insert “x” in array “resources” 

    signal(not_empty); 

  } 

  procedure get_entry(resource *x) { 

    if (array “resources” is empty, determined maybe by a count) 

      wait(not_empty); 

    *x = get resource from array “resources” 

    signal(not_full); 

  } 

EnterMonitor 

EnterMonitor 

ExitMonitor 

ExitMonitor 
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• Who runs when the signal() is done and there is a thread waiting 
on the condition variable? 
 

• Hoare monitors:  signal(c) means 

– run waiter immediately 

– signaller blocks immediately 

• condition guaranteed to hold when waiter runs 

• but, signaller must restore monitor invariants before signalling! 

– cannot leave a mess for the waiter, who will run immediately! 
 

• Mesa monitors:  signal(c) means 

– waiter is made ready, but the signaller continues 

• waiter runs when signaller leaves monitor (or waits) 

– signaller need not restore invariant until it leaves the monitor 

– being woken up is only a hint that something has changed 

• signalled condition may no longer hold 

• must recheck conditional case 

 

There is a subtle issue with that code… 
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• Hoare monitors: 

 

• Mesa monitors: 

 

• Mesa monitors easier to use 

– more efficient: fewer context switches 

– directly supports broadcast 

 

• Hoare monitors leave less to chance 

– when wake up, condition guaranteed to be what you expect 

if (notReady) wait(c) 

while (notReady) wait(c) 

Hoare vs. Mesa Monitors 
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Runtime system calls for Hoare monitors 

• EnterMonitor(m) {guarantee mutual exclusion} 

– if m occupied, insert caller into queue m 

– else mark as occupied, insert caller into ready queue 

– choose somebody to run 

• ExitMonitor(m) {hit the road, letting someone else run} 

– if queue m is empty, then mark m as unoccupied 

– else move a thread from queue m to the ready queue 

– insert caller in ready queue 

– choose someone to run 
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• Wait(c) {step out until condition satisfied} 

– if queue m is empty, then mark m as unoccupied 

– else move a thread from queue m to the ready queue 

– put the caller on queue c 

– choose someone to run 

• Signal(c) {if someone’s waiting, step out and let him run} 

– if queue c is empty then put the caller on the ready queue 

– else move a thread from queue c to the ready queue, and put the 

caller into queue m 

– choose someone to run 

 

Runtime system calls for Hoare monitors 

(cont’d) 
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Runtime system calls for Mesa monitors 

• EnterMonitor(m) {guarantee mutual exclusion} 

– … 

• ExitMonitor(m) {hit the road, letting someone else run} 

– … 

• Wait(c) {step out until condition satisfied} 

– … 

• Signal(c) {if someone’s waiting, give him a shot after I’m 

done} 

– if queue c is occupied, move one thread from queue c to queue m 

– return to caller 
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• Broadcast(c) {food fight!} 

– move all threads on queue c onto queue m 

– return to caller 
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Monitor Summary 

• Language supports monitors 

• Compiler understands them 

– compiler inserts calls to runtime routines for 

• monitor entry 

• monitor exit 

• signal 

• Wait 

– Language/object encapsulation ensures correctness 

• Sometimes! With conditions you STILL need to think about 

synchronization 

• Runtime system implements these routines 

– moves threads on and off queues 

– ensures mutual exclusion! 


